Barrier Layers in the Tropical South Atlantic: Mean Dynamics and Submesoscale Effects*

Author:

Veneziani Milena1,Griffa Annalisa2,Garraffo Zulema3,Mensa Jean A.4

Affiliation:

1. Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California

2. ISMAR-CNR, Pozzuolo di Lerici, Italy, and Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

3. IMSG, NOAA/EMC, NCWCP, College Park, Maryland, and Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

4. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Abstract Barrier layers are generated when the surface mixed layer is shallower than the layer where temperature is well mixed, in geographical regions where salinity plays a key role in setting up upper-ocean density stratification. In the tropical oceans, thick barrier layers are also found in a latitude range where spiraling trajectories from surface in situ drifters suggest the presence of predominantly cyclonic submesoscale-like vortices. The authors explore these dynamical processes and their interplay in the present paper, focusing on the tropical South Atlantic Ocean and using a high-resolution modeling approach. The objective is threefold: to investigate the mean dynamics contributing to barrier-layer formation in this region, to study the distribution and seasonality of submesoscale features, and to verify whether and how the submesoscale impacts barrier-layer thickness. The model used is the Regional Ocean Modeling System (ROMS) in its Adaptive Grid Refinement in Fortran (AGRIF) online-nested configuration with a horizontal resolution ranging between 9 and 1 km. The simulated circulation is first described in terms of mean and submesoscale dynamics, and the associated seasonal cycle. Mechanisms for barrier-layer formation are then investigated. The results confirm previous hypotheses by Mignot et al. on the relevance of enhanced winter mixing deepening the isothermal layer, whereas the salinity stratification is sustained by advection of surface fresh waters and subsurface salinity maxima. Finally, submesoscale effects on barrier-layer thickness are studied, quantifying their contribution to vertical fluxes of temperature and salinity. Submesoscale vortices associated with salinity fronts are found to have a significant effect, producing thicker barrier layers (by ~20%–35%) and a shallower mixed layer because of their restratifying effect on salinity.

Publisher

American Meteorological Society

Subject

Oceanography

Reference82 articles.

1. The barrier layer of the Atlantic warm pool: Formation mechanism and influence on the mean climate;Balaguru;Tellus,2012

2. Variability of the tropical Atlantic simulated by a general circulation model with two different mixed layer physics;Blanke;J. Phys. Oceanogr.,1993

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3