Interannual Variability of Barrier Layer in the Tropical Atlantic and Its Relationship with the Tropical Atlantic Modes

Author:

Ma Xiao1,Liu Hailong1,Wang Xidong23

Affiliation:

1. a School of Oceanography, Shanghai Jiao Tong University, Shanghai, China

2. b Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

3. c Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China

Abstract

Abstract This study reveals the role of the tropical Atlantic variability in modulating barrier layer thickness (BLT) in peak seasons. Based on reanalysis data during 1980–2016, statistical and dynamical analyses are performed to investigate the mechanism of BLT variability associated with the tropical Atlantic modes. The regions with significant correlation between BLT and tropical Atlantic modes are located on the northwest and southeast coasts of the tropical Atlantic, which are consistent with BLT maximum variability regions. In boreal spring, BLT decreases in the northwest because less latent heat release affected by weak trade wind related to the Atlantic meridional mode (AMM) shoals the isothermal layer depth (ITLD). In the south equatorial Atlantic, deepened mixed layer depth (MLD) is controlled by the decreasing freshwater input brought by a northward shift of the intertropical convergence zone (ITCZ) and further leads to a thinner barrier layer (BL). However, a shoaling MLD appears in the north equatorial Atlantic, which results from excessive freshwater input, causing a thick BL there. In boreal summer, positive runoff anomaly caused by the Atlantic equatorial mode (AEM) leads to upper warming of the tropical northwest Atlantic and a shallowing ITLD, favoring a thinner BL there. However, a southward shift of ITCZ brings more freshwater into the south equatorial Atlantic, inducing a shallowing MLD as well as a thicker BL. AEM-driven horizontal heat advection of the south equatorial current contributes to a thick ITLD in the central southern tropical Atlantic and thus increases BLT. Significance Statement This research aims to reveal how the tropical Atlantic meridional and equatorial interannual climatic modes affect barrier layer thickness (BLT). These two climate modes can affect the wind field, ocean current, and precipitation through air–sea interaction processes, and further affect mixing, heat–salt transport, and stratification in the upper ocean and thus BLT. This finding is important because the barrier layer restricts the exchange of heat, momentum, mass, and nutrients between the mixed layer and the thermocline, thereby impacting local and remote weather events, the ecological environment, and the climate. Our results provide guidance for interpreting the interannual variability of BLT in the tropical Atlantic.

Funder

National Natural Science Foundation of China

Shanghai Frontiers Science Center of Polar Science

Key Technologies Research and Development Program

Shanghai Typhoon Research Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Reference72 articles.

1. Salinity-induced mixed and barrier layers in the southwestern tropical Atlantic Ocean off the northeast of Brazil;Araujo, M.,2011

2. Sea surface salinity signature of the tropical Atlantic interannual climatic modes;Awo, F. M.,2018

3. Ocean barrier layers’ effect on tropical cyclone intensification;Balaguru, K.,2012

4. Atmospheric teleconnections from the equatorial Pacific;Bjerknes, J. A.,1969

5. Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. NOAA Atlas NESDIS 87, 207 pp.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3