Hurricane Eyewall Replacement Cycle Thermodynamics and the Relict Inner Eyewall Circulation

Author:

Sitkowski Matthew1,Kossin James P.2,Rozoff Christopher M.3,Knaff John A.4

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, and Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

2. NOAA/National Climatic Data Center, Asheville, North Carolina, and Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

3. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

4. NOAA/NESDIS, Regional and Mesoscale Meteorology Branch, Fort Collins, Colorado

Abstract

Abstract Flight-level aircraft data are used to examine inner-core thermodynamic changes during eyewall replacement cycles (ERCs) and the role of the relict inner eyewall circulation on the evolution of a hurricane during and following an ERC. Near the end of an ERC, the eye comprises two thermodynamically and kinematically distinct air masses separated by a relict wind maximum, inside of which high inertial stability restricts radial motion creating a “containment vessel” that confines the old-eye air mass. Restricted radial flow aloft also reduces subsidence within this confined region. Subsidence-induced warming is thus focused along the outer periphery of the developing post-ERC eye, which leads to a flattening of the pressure profile within the eye and a steepening of the gradient at the eyewall. This then causes a local intensification of the winds in the eyewall. The cessation of active convection and subsidence near the storm center, which has been occurring over the course of the ERC, leads to an increase in minimum pressure. The increase in minimum pressure concurrent with the increase of winds in the developing eyewall can create a highly anomalous pressure–wind relationship. When the relict inner eyewall circulation dissipates, the air masses are free to mix and subsidence can resume more uniformly over the entire eye.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3