A Study on the Synoptic-Dynamical Characteristics of Compact Tropical Cyclones in the Western North Pacific

Author:

Yen-Chu Chen Delia1,Cheung Kevin K. W.2,Lee Cheng-Shang1

Affiliation:

1. Department of Atmospheric Sciences, National Taiwan University, and Taiwan Typhoon and Flood Research Institute, National Applied Research Laboratories, Taipei, Taiwan

2. Department of Environment and Geography, and Climate Futures Research Centre, Macquarie University, Sydney, Australia

Abstract

Abstract This study focuses on the synoptic and dynamical characteristic of compact and incompact tropical cyclones (TCs) in the western North Pacific. To identify the distinct mechanisms related to the development and maintenance of these two categories of TCs, the Weather Research and Forecasting Model (WRF) is used to simulate the compact Typhoon Yutu (2007) and the incompact Typhoon Manyi (2007). Simulation results of Yutu show that the wind speed increases primarily in the inner-core region, where strong relative vorticity and high inertial stability is also located. Comparatively, the inertial stability for Typhoon Manyi is much weaker, which makes it more susceptible to influences from external low-level forcing. Diagnoses of the numerical simulations as well as examination of the synoptic environments that embed the two TCs suggest that compact TCs mainly develop through internal dynamics, whereas incompact TCs are usually driven by external forcing. Several sets of sensitivity experiments are designed to determine the relative roles of initial vortex structure, environmental flow, and humidity in subsequent TC structural evolution. Results show that in an environment that favors compact TCs, initial vortex largely determines the later structural development. However, vortex development is quite sensitive to its initial intensity and the radius of maximum wind (RMW) under environmental flow that favors incompact TCs. Results of the experiments on environmental humidity show that a humid environment generates large vortex structural changes in incompact TCs. A relatively dry environment brings minimal impacts to the originally compact TC, but can increase the compactness of the originally incompact ones.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3