Characterizing and Modeling Temporal and Spatial Trends in Rainfall Extremes

Author:

Aryal Santosh K.1,Bates Bryson C.2,Campbell Edward P.3,Li Yun3,Palmer Mark J.3,Viney Neil R.1

Affiliation:

1. CSIRO Land and Water, Wembley, Western Australia, Australia

2. CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia

3. CSIRO Mathematical and Information Sciences, Wembley, Western Australia, Australia

Abstract

Abstract A hierarchical spatial model for daily rainfall extremes that characterizes their temporal variation due to interannual climatic forcing as well as their spatial pattern is proposed. The model treats the parameters of at-site probability distributions for rainfall extremes as “data” that are likely to be spatially correlated and driven by atmospheric forcing. The method is applied to daily rainfall extremes for summer and winter half years over the Swan–Avon River basin in Western Australia. Two techniques for the characterization of at-site extremes—peaks-over-threshold (POT) analysis and the generalized extreme value (GEV) distribution—and three climatic drivers—the El Niño–Southern Oscillation as measured by the Southern Oscillation index (SOI), the Southern Hemisphere annular mode as measured by an Antarctic Oscillation index (AOI), and solar irradiance (SI)—were considered. The POT analysis of at-site extremes revealed that at-site thresholds lacked spatial coherence, making it difficult to determine a smooth spatial surface for the threshold parameter. In contrast, the GEV-based analysis indicated smooth spatial patterns in daily rainfall extremes that are consistent with the predominant orientation of storm tracks over the study area and the presence of a coastal escarpment near the western edge of the basin. It also indicated a linkage between temporal trends in daily rainfall extremes and those of the SOI and AOI. By applying the spatial models to winter and summer extreme rainfalls separately, an apparent increasing trend in return levels of summer rainfall to the northwest and decreasing trends in return levels of winter rainfall to the southwest of the region are found.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3