Floods and Heavy Precipitation at the Global Scale: 100‐Year Analysis and 180‐Year Reconstruction

Author:

Renard B.123ORCID,McInerney D.2ORCID,Westra S.2ORCID,Leonard M.2ORCID,Kavetski D.2ORCID,Thyer M.2ORCID,Vidal J.‐P.1ORCID

Affiliation:

1. INRAE RiverLy Lyon France

2. School of Civil, Environmental and Mining Engineering University of Adelaide Adelaide SA Australia

3. INRAE RECOVER Aix Marseille University Aix‐En‐Provence France

Abstract

AbstractFloods and heavy precipitation have disruptive impacts worldwide, but their historical variability remains only partially understood at the global scale. This article aims at reducing this knowledge gap by jointly analyzing seasonal maxima of streamflow and precipitation at more than 3,000 stations over a 100‐year period. The analysis is based on Hidden Climate Indices (HCIs). Like standard climate indices (e.g., Nino 3.4, NAO), HCIs are used as covariates explaining the temporal variability of data, but unlike them, HCIs are estimated from the data. In this work, a distinction is made between common HCIs, that affect both heavy precipitation and floods, and specific HCIs, that exclusively affect one or the other. Overall, HCIs do not show noticeable autocorrelation, but some are affected by noticeable trends. In particular, strong and wide‐ranging trends are identified in precipitation‐specific HCIs, while trends affecting flood‐specific HCIs are weaker and have more localized effects. A probabilistic model is then derived to link HCIs and large‐scale atmospheric variables (pressure, wind, temperature) and to reconstruct HCIs since 1836 using the 20CRv3 reanalysis. In turn this allows estimating the probability of occurrence of floods and heavy precipitation at the global scale. This 180‐year reconstruction highlights flood hot‐spots and hot‐moments in the distant past, well before the establishment of perennial monitoring networks. The approach presented in this study is generic and paves the way for an improved characterization of historical variability by making a better use of long but highly irregular station data sets.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3