Northwest Territories and Nunavut Snow Characteristics from a Subarctic Traverse: Implications for Passive Microwave Remote Sensing

Author:

Derksen Chris1,Silis Arvids1,Sturm Matthew2,Holmgren Jon2,Liston Glen E.3,Huntington Henry4,Solie Daniel5

Affiliation:

1. Climate Research Division, Environment Canada, Toronto, Ontario, Canada

2. Cold Regions Research and Engineering Laboratory, U.S. Army Engineer Research and Development Center, Fort Wainwright, Alaska

3. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

4. Huntington Consulting, Anchorage, Alaska

5. University of Alaska Fairbanks, Fairbanks, Alaska

Abstract

Abstract During April 2007, a coordinated series of snow measurements was made across the Northwest Territories and Nunavut, Canada, during a snowmobile traverse from Fairbanks, Alaska, to Baker Lake, Nunavut. The purpose of the measurements was to document the general nature of the snowpack across this region for the evaluation of satellite- and model-derived estimates of snow water equivalent (SWE). Although detailed, local snow measurements have been made as part of ongoing studies at tundra field sites (e.g., Daring Lake and Trail Valley Creek in the Northwest Territories; Toolik Lake and the Kuparak River basin in Alaska), systematic measurements at the regional scale have not been previously collected across this region of northern Canada. The snow cover consisted of depth hoar and wind slab with small and ephemeral fractions of new, recent, and icy snow. The snow was shallow (<40 cm deep), usually with fewer than six layers. Where snow was deposited on lake and river ice, it was shallower, denser, and more metamorphosed than where it was deposited on tundra. Although highly variable locally, no longitudinal gradients in snow distribution, magnitude, or structure were detected. This regional homogeneity allowed us to identify that the observed spatial variability in passive microwave brightness temperatures was related to subgrid fractional lake cover. Correlation analysis between lake fraction and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature showed frequency dependent, seasonally evolving relationships consistent with lake ice drivers. Simulations of lake ice thickness and snow depth on lake ice produced from the Canadian Lake Ice Model (CLIMo) indicated that at low frequencies (6.9, 10.7 GHz), correlations with lake fraction were consistent through the winter season, whereas at higher frequencies (18.7, 36.5 GHz), the strength and direction of the correlations evolved consistently with the penetration depth as the influence of the subice water was replaced by emissions from the ice and snowpack. A regional rain-on-snow event created a surface ice lens that was detectable using the AMSR-E 36.5-GHz polarization gradient due to a strong response at the horizontal polarization. The appropriate polarization for remote sensing of the tundra snowpack depends on the application: horizontal measurements are suitable for ice lens detection; vertically polarized measurements are appropriate for deriving SWE estimates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

1. The Seasonal Snow Cover of Arctic Alaska.;Benson,1969

2. Reassessment of winter precipitation on Alaska’s arctic slope and measurements on the flux of wind blown snow.;Benson,1982

3. Structure and wind transport of seasonal snow on the Arctic slope of Alaska.;Benson;Ann. Glaciol.,1993

4. Assessment of spring snow cover duration variability over northern Canada from satellite datasets.;Brown;Remote Sens. Environ.,2007

5. Satellite sensor estimates of Northern Hemisphere snow volume.;Chang;Int. J. Remote Sens.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3