Regional Groundwater Evapotranspiration in Illinois

Author:

Yeh Pat J-F.1,Famiglietti J. S.2

Affiliation:

1. Institute of Industrial Science, University of Tokyo, Tokyo, Japan

2. Department of Earth System Science, University of California, Irvine, Irvine, California

Abstract

Abstract The role of shallow unconfined aquifers in supplying water for evapotranspiration (i.e., groundwater evaporation) is investigated in this paper. Recent results from regional land surface modeling have indicated that in shallow water table areas, a large portion of evapotranspiration comes directly from aquifers. However, little field evidence at the regional scale has been reported to support this finding. Using a comprehensive 19-yr (1984–2002) monthly hydrological dataset on soil moisture, water table depth, and streamflow in Illinois, regional recharge to and evaporation from groundwater are estimated by using soil water balance computation. The 19-yr mean groundwater recharge is estimated to be 244 mm yr−1 (25% of precipitation), with uncertainty ranging from 202 to 278 mm yr−1. During the summer, the upward capillary flux from the shallow aquifer helps to maintain a high rate of evapotranspiration. Groundwater evaporation (negative groundwater recharge) occurs during the period of July–September, with a total of 31.4 mm (10% of evapotranspiration). Analysis of the relative soil saturation at 11 depths from 0 to 2 m deep supports the dominance of groundwater evaporation across the water table in dry periods. The zero-flux plane separating the recharge zone from the evapotranspiration zone propagates downward from about 70- to 110-cm depth during summer, reflecting the water supply from progressively lower layers for evapotranspiration. Despite its small magnitude, neglecting regional groundwater evaporation in shallow groundwater areas would result in underestimated root-zone soil moisture and hence evapotranspiration by as large as 20% in the dry summer seasons.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3