Estimation of Evapotranspiration in the Desert–Oasis Transition Zone Using the Water Balance Method and Groundwater Level Fluctuation Method—Taking the Haloxylon ammodendron Forest at the Edge of the Gurbantunggut Desert as an Example

Author:

Jiao Ping123,Hu Shun-Jun13

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China

2. School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100000, China

3. National Field Scientific Observation and Research Station of Akesu Oasis Farmland Ecosystem, Aksu 843000, China

Abstract

Shallow groundwater is an important water source for Haloxylon ammodendron (H. ammodendron). The accurate estimation of evapotranspiration (ETg) from groundwater is of great significance for the water cycle and the maintenance of ecological stability. Using a combination of the water balance method and the groundwater level fluctuation method (WTF), the water balance components (precipitation, soil moisture, groundwater depth, and Bowen ratio meteorological data) in the desert–oasis transition zone were continuously monitored from 2015 to 2018 and the ETg was estimated The results showed that the closed degree of Bowen specific energy after data screening was higher, and the annual actual evapotranspiration (ETa) value could be reliably calculated at 260.87 mm. As the main contributor to water consumption in the growing season, latent heat accounted for 70.16~91.86% of the energy balance. Precipitation had no significant impact on water consumption for H. ammodendron vegetation growth, and the precipitation in the main growing season accounted for 59.44% of the ETa. The groundwater depth in the study area decreased yearly and had a significant impact on the growth of H. ammodendron vegetation. Although the groundwater depth in the study area was greater than 9 m, the ETg, as an important part of the water balance, was found to participate in the evapotranspiration process brought about by H. ammodendron due to the strong root system and supporting capillary water in the soil. The actual evapotranspiration ETa for H. ammodendron in the main growing season was 244.32 mm, and the contribution rate for ETg was as high as 74.78% or approximately 182.35 mm. After the ETg was verified using the water balance method and WTF, R was greater than 0.96, the RMSE range was 1.5931~4.5706, the bias range was −0.15~0.11, and the IOA value was greater than 0.95. The accuracy of the estimation model was high, and the results were relatively accurate. The model can be applied in the desert–oasis transition zone to obtain accurate ETg estimations and provide theoretical guidance and a scientific basis for local water resource management and ecological protection.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Xinjiang Water Conservancy Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3