Modeling Turbulent Subglacial Meltwater Plumes: Implications for Fjord-Scale Buoyancy-Driven Circulation

Author:

Carroll Dustin1,Sutherland David A.1,Shroyer Emily L.2,Nash Jonathan D.2,Catania Ginny A.3,Stearns Leigh A.4

Affiliation:

1. Department of Geological Sciences, University of Oregon, Eugene, Oregon

2. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

3. Department of Geological Sciences, and Institute for Geophysics, The University of Texas at Austin, Austin, Texas

4. Department of Geology, University of Kansas, Lawrence, Kansas

Abstract

AbstractFjord-scale circulation forced by rising turbulent plumes of subglacial meltwater has been identified as one possible mechanism of oceanic heat transfer to marine-terminating outlet glaciers. This study uses buoyant plume theory and a nonhydrostatic, three-dimensional ocean–ice model of a typical outlet glacier fjord in west Greenland to investigate the sensitivity of meltwater plume dynamics and fjord-scale circulation to subglacial discharge rates, ambient stratification, turbulent diffusivity, and subglacial conduit geometry. The terminal level of a rising plume depends on the cumulative turbulent entrainment and ambient stratification. Plumes with large vertical velocities penetrate to the free surface near the ice face; however, midcolumn stratification maxima create a barrier that can trap plumes at depth as they flow downstream. Subglacial discharge is varied from 1–750 m3 s−1; large discharges result in plumes with positive temperature and salinity anomalies in the upper water column. For these flows, turbulent entrainment along the ice face acts as a mechanism to vertically transport heat and salt. These results suggest that plumes intruding into stratified outlet glacier fjords do not always retain the cold, fresh signature of meltwater but may appear as warm, salty anomalies. Fjord-scale circulation is sensitive to subglacial conduit geometry; multiple point source and line plumes result in stronger return flows of warm water toward the glacier. Classic plume theory provides a useful estimate of the plume’s outflow depth; however, more complex models are needed to resolve the fjord-scale circulation and melt rates at the ice face.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3