Fountains impinging on a density interface

Author:

ANSONG JOSEPH K.,KYBA PATRICK J.,SUTHERLAND BRUCE R.

Abstract

We present an experimental study of an axisymmetric turbulent fountain in a two-layer stratified environment. Interacting with the interface, the fountain is observed to exhibit three regimes of flow. It may penetrate the interface, but nonetheless return to the source where it spreads as a radially propagating gravity current; the return flow may be trapped at the interface where it spreads as a radially propagating intrusion or it may do both. These regimes have been classified using empirically determined regime parameters which govern the relative initial momentum of the fountain and the relative density difference of the fountain and the ambient fluid. The maximum vertical distance travelled by the fountain in a two-layer fluid has been theoretically determined by extending the theory developed for fountains in a homogeneous environment. The theory compares favourably with experimental measurements. We have also developed a theory to analyse the initial speeds of the resulting radial currents. The spreading currents exhibited two different flow regimes: a constant-velocity regime and an inertia-buoyancy regime in which the front position,R, scales with time,t, asRt3/4. These regimes were classified using a critical Froude number which characterized the competing effects of momentum and buoyancy in the currents.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference34 articles.

1. The behaviour of chimney plumes;Scorer;Intl J. Air Pollution,1959

2. Rise height for negatively buoyant fountains and depth of penetration for negatively buoyant jets impinging an interface;Friedman;Trans. ASME I: J. Fluids Engng,2000

3. The ascent of turbulent forced plumes in a calm atmosphere;Morton;Intl J. Air Pollution,1959

4. Turbulent Jets and Plumes

5. The spread of a negatively buoyant plume in a calm environment

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3