Simulations of Internal Solitary Wave Interactions with Mesoscale Eddies in the Northeastern South China Sea

Author:

Xie Jieshuo1,He Yinghui2,Chen Zhiwu2,Xu Jiexin2,Cai Shuqun2

Affiliation:

1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and University of Chinese Academy of Sciences, Beijing, China

2. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Abstract

AbstractWith the combined analysis of synthetic aperture radar image and satellite altimeter data collected in the northeastern South China Sea (SCS), this study found one type of distorted phenomenon of internal solitary wave (ISW) with the long front caused by the oceanic mesoscale eddy. Motivated by these satellite observations, the authors carried out numerical experiments using the fully nonhydrostatic and nonlinear MITgcm to investigate the perturbation of ISWs by an isolated cyclonic or anticyclonic eddy. The results show that the ISW front is distorted by these oceanic eddies due to the retardation and acceleration effects at their two sides. The ISW energy along the front is focused onto (scattered from) the wave fragment where a concave (convex) pattern is formed, and the previously accumulated energy in the focusing region is gradually released after the ISW propagates away from the eddies. The ISW amplitude is modulated greatly by the eddies due to the energy redistribution along the front. Sensitivity results indicate that the magnitude of the modulated ISW amplitude in the focusing region can reach twice the incident ISW amplitude, while in the scattering region it can be reduced by more than a half. These results therefore suggest that models with eddies included, especially the energetic eddies, could further improve the amplitude predictions in the northeastern SCS. Additionally, the internal gravity wave formed behind the energy-focusing region by the anticyclonic eddies can steepen and break with the consequent formation of a secondary trailing ISW packet. Finally, this study shows that the model results of the distorted front and trailing packet are in qualitative agreement with that of the satellite observations in the northeastern SCS.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3