Kelvin waves from the equatorial Indian Ocean modulate the nonlinear internal waves in the Andaman Sea

Author:

Yang Yunchao,Huang Xiaodong,Zhao Wei,Zhou Chun,Zhang Zhiwei,Guan Shoude,Tian Jiwei

Abstract

Abstract In the equatorial Indian Ocean, strong westerly and easterly wind anomaly can drive eastward downwelling and upwelling Kelvin waves, respectively, which play an important role in determining the circulations and thermal structures near the equator. Kelvin waves can propagate into the Andaman Sea, a marginal sea located to the northeast of the Indian Ocean. In the Andaman Sea, nonlinear internal waves (NLIWs) that are crucial in facilitating the mixing in the ocean interior and maintaining the ecosystem are found to be extremely active. Although both equatorial Kelvin waves and NLIWs have been well known in oceanography, the influence of equatorial Kelvin waves on NLIWs in the Andaman Sea remains unclear. In this study, based on long-term mooring measurements in the southern Andaman Sea, it is found that the NLIW amplitude shows remarkable intraseasonal and seasonal variances, and these variances can be mostly explained by the occurrence of equatorial Kelvin waves. Downwelling Kelvin waves can deepen the thermocline depth by tens of meters, so that the NLIW amplitude can be reduced up to 22%. Meanwhile, upwelling Kelvin waves can notably uplift the thermocline depth and the NLIW amplitude can be enhanced up to 32%. These discoveries provide credible evidence that basin-scale waves from the open ocean can remotely modulate small-scale internal waves in marginal seas.

Funder

Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City

National Natural Science Foundation of China

2022 Research Program of Sanya Yazhou Bay Science and Technology City

CNOOC Science and Technology Project

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3