Affiliation:
1. Institute of Oceanography, National Taiwan University, Taipei, Taiwan
Abstract
AbstractA linear theory for estuarine adjustment to river forcing as put forth by MacCready is extended to allow for quantification of nonlinear salt flux induced by gravitational exchange flow. It has been shown that, under a steplike change of river forcing, the estuarine responses are asymmetric, with the salinity field adjusting faster during the rising discharge. The asymmetry arises because the up-estuary salt flux due to exchange flow is a nonlinear function of estuarine length ∝ L−3. During the rising discharge, the estuary is longer, and the salt flux is comparatively less sensitive to the length variations. As a result, the up-estuary salt transport cannot keep pace with the rate of discharge changes, leading to a larger net salt flux and thus a shorter response time. A simple theory accounting for the nonlinear effect is then applied to Hudson-like systems and shown to capture the asymmetric response. The asymmetry is generalizable to other estuarine regimes where up-estuary salt fluxes are expressed as nonlinear power laws.
Publisher
American Meteorological Society
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献