Asymmetric Estuarine Responses to Changes in River Forcing: A Consequence of Nonlinear Salt Flux

Author:

Chen Shih-Nan1

Affiliation:

1. Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Abstract

AbstractA linear theory for estuarine adjustment to river forcing as put forth by MacCready is extended to allow for quantification of nonlinear salt flux induced by gravitational exchange flow. It has been shown that, under a steplike change of river forcing, the estuarine responses are asymmetric, with the salinity field adjusting faster during the rising discharge. The asymmetry arises because the up-estuary salt flux due to exchange flow is a nonlinear function of estuarine length ∝ L−3. During the rising discharge, the estuary is longer, and the salt flux is comparatively less sensitive to the length variations. As a result, the up-estuary salt transport cannot keep pace with the rate of discharge changes, leading to a larger net salt flux and thus a shorter response time. A simple theory accounting for the nonlinear effect is then applied to Hudson-like systems and shown to capture the asymmetric response. The asymmetry is generalizable to other estuarine regimes where up-estuary salt fluxes are expressed as nonlinear power laws.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3