Contribution of Tropical Cyclones to the Global Precipitation from Eight Seasons of TRMM Data: Regional, Seasonal, and Interannual Variations

Author:

Jiang Haiyan1,Zipser Edward J.2

Affiliation:

1. Department of Earth and Environment, Florida International University, Miami, Florida

2. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Abstract

Abstract Based on the University of Utah Tropical Rainfall Measuring Mission (TRMM) precipitation feature (PF) database, tropical cyclone PFs (TCPFs) are identified for over 600 storms that reached tropical storm intensity level or above around the globe during eight TC seasons from the period of 1998–2006. Each TC season includes 6 months yr−1. Six basins are considered: Atlantic (ATL), east-central Pacific (EPA), northwest Pacific (NWP), north Indian Ocean (NIO), south Indian Ocean (SIO), and South Pacific (SPA). TRMM 2A25- (precipitation radar) and 3B42- (multisatellite) derived rainfall amounts are used to assess the impact of tropical cyclone (TC) rainfall in altering the regional, seasonal, and interannual distribution of the global total rainfall during the TC seasons in the six basins. The global, seasonal, and interannual variations of the monthly rainfall inside TCPFs are presented. The fractional rainfall contributions by TCPFs are compared in different basins. The TRMM 2A25 and 3B42 retrievals are compared in terms of the rainfall contribution by TCs. After constraining TC rainfall for being within 500 km from the TC center, 2A25 and 3B42 show similar results: 1) TCs contribute, respectively, 8%–9%, 7%, 11%, 5%, 7%–8%, and 3%–4% of the seasonal rainfall to the entire domain of the ATL, EPA, NWP, NIO, SIO, and SPA basins; 2) both algorithms show that, regionally, the maximum percentage of TC rainfall contribution is located in EPA basin near the Mexico Baja California coast (about 55%), SIO close to the Australia coast (about 55%), and NWP near Taiwan (about 35%–40%); 3) the maximum monthly percentage of TC rainfall contribution is in September for the ATL basin, August and September for EPA, August for NWP, May for NIO, March for SIO, and January and February for SPA; 4) the percentage of rainfall contributed by TCs is higher during El Niño years than La Niña years for EPA and NWP basins. The trend is the reverse for ATL and NIO, and nearly neutral for SIO and SPA. However, this study does not include enough years of data to expect the findings to be representative of long-term statistics of the interannual variations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3