A 10-Year Climatology of Tropical Radiative Heating and Its Vertical Structure from TRMM Observations

Author:

L’Ecuyer Tristan S.1,McGarragh Greg1

Affiliation:

1. Colorado State University, Fort Collins, Colorado

Abstract

Abstract This paper outlines recent advances in estimating atmospheric radiative heating rate profiles from the sensors aboard the Tropical Rainfall Measuring Mission (TRMM). The approach employs a deterministic framework in which four distinct retrievals of clouds, precipitation, and other atmospheric and surface properties are combined to form input to a broadband radiative transfer model that simulates profiles of upwelling and downwelling longwave and shortwave radiative fluxes in the atmosphere. Monthly, 5° top of the atmosphere outgoing longwave and shortwave flux estimates agree with corresponding observations from the Clouds and the Earth’s Radiant Energy System (CERES) to within 7 W m−2 and 3%, respectively, suggesting that the resulting products can be thought of as extending the eight-month CERES dataset to cover the full lifetime of TRMM. The analysis of a decade of TRMM data provides a baseline climatology of the vertical structure of atmospheric radiative heating in today’s climate and an estimate of the magnitude of its response to environmental forcings on weekly to interannual time scales. In addition to illustrating the scope and properties of the dataset, the results highlight the strong influence of clouds, water vapor, and large-scale dynamics on regional radiation budgets and the vertical structure of radiative heating in the tropical and subtropical atmospheres. The combination of the radiative heating rate product described here, with profiles of latent heating that are now also being generated from TRMM sensors, provides a unique opportunity to develop large-scale estimates of vertically resolved atmospheric diabatic heating using satellite observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3