Affiliation:
1. a Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas
Abstract
AbstractRecent studies have examined moist entropy (ME) as a proxy for moist static energy (MSE) and the relative role of the underlying processes responsible for changes in ME that potentially affect MJO propagation. This study presents an analysis of the intraseasonally varying (ISV) ME anomalies throughout the lifetime of observed MJO events. A climatology of continuing and terminating MJO events is created from an event identification algorithm using common tracking indices including the OLR-based MJO index (OMI), filtered OMI (FMO), real-time multivariate MJO (RMM), and velocity potential MJO (VPM) index. ME composites for all indices show a statistically significant break in the wavenumber-1 oscillation at day 0 for terminating events in nearly all domains except RMM phase 6 and phase 7. The ME tendency is decomposed into horizontal and vertical advection, sensible and latent heat fluxes, and shortwave and longwave radiative fluxes using ERA-Interim data. The relative role of each processes toward the eastward propagation is discussed as well as their effects on MJO stabilization. Statistically significant differences occur for all terms by day −10. A domain sensitivity test is performed where eastward propagation is favored for vertical advection given a larger, asymmetric domain for continuing events. A reduced eastward propagation from vertical advection is evident 2–3 days before similar differences in horizontal advection for terminating events. The importance of horizontal advection for the eastward propagation of the MJO is discussed in addition to the relative destabilization from vertical advection in the convectively suppressed region downstream of future terminating MJOs.
Publisher
American Meteorological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献