The Moist Entropy Budget of Terminating Madden–Julian Oscillation Events

Author:

Chrisler Brett1,Stachnik Justin P.1

Affiliation:

1. a Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas

Abstract

AbstractRecent studies have examined moist entropy (ME) as a proxy for moist static energy (MSE) and the relative role of the underlying processes responsible for changes in ME that potentially affect MJO propagation. This study presents an analysis of the intraseasonally varying (ISV) ME anomalies throughout the lifetime of observed MJO events. A climatology of continuing and terminating MJO events is created from an event identification algorithm using common tracking indices including the OLR-based MJO index (OMI), filtered OMI (FMO), real-time multivariate MJO (RMM), and velocity potential MJO (VPM) index. ME composites for all indices show a statistically significant break in the wavenumber-1 oscillation at day 0 for terminating events in nearly all domains except RMM phase 6 and phase 7. The ME tendency is decomposed into horizontal and vertical advection, sensible and latent heat fluxes, and shortwave and longwave radiative fluxes using ERA-Interim data. The relative role of each processes toward the eastward propagation is discussed as well as their effects on MJO stabilization. Statistically significant differences occur for all terms by day −10. A domain sensitivity test is performed where eastward propagation is favored for vertical advection given a larger, asymmetric domain for continuing events. A reduced eastward propagation from vertical advection is evident 2–3 days before similar differences in horizontal advection for terminating events. The importance of horizontal advection for the eastward propagation of the MJO is discussed in addition to the relative destabilization from vertical advection in the convectively suppressed region downstream of future terminating MJOs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atmosphere–Ocean Coupled Energy Budgets of Tropical Convective Discharge–Recharge Cycles;Journal of the Atmospheric Sciences;2024-01

2. Tropical‐wave activity and Madden–Julian oscillation termination;Quarterly Journal of the Royal Meteorological Society;2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3