On the Changing Contribution of Snow to the Hydrology of the Fraser River Basin, Canada

Author:

Kang Do Hyuk1,Shi Xiaogang2,Gao Huilin3,Déry Stephen J.1

Affiliation:

1. Environmental Science and Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada

2. National Hydrology Research Centre, Environment Canada, Saskatoon, Saskatchewan, Canada

3. Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas

Abstract

Abstract This paper presents an application of the Variable Infiltration Capacity (VIC) model to the Fraser River basin (FRB) of British Columbia (BC), Canada, over the latter half of the twentieth century. The Fraser River is the longest waterway in BC and supports the world’s most abundant Pacific Ocean salmon populations. Previous modeling and observational studies have demonstrated that the FRB is a snow-dominated system, but with climate change, it may evolve to a pluvial regime. Thus, the goal of this study is to evaluate the changing contribution of snow to the hydrology of the FRB over the latter half of the twentieth century. To this end, a 0.25° atmospheric forcing dataset is used to drive the VIC model from 1949 to 2006 (water years) at a daily time step over a domain covering the entire FRB. A model evaluation is first conducted over 11 major subwatersheds of the FRB to quantitatively assess the spatial variations of snow water equivalent (SWE) and runoff (R). The ratio of the spatially averaged maximum SWE to R (RSR) is used to quantify the contribution of snow to the runoff in the 11 subwatersheds of interest. From 1949 to 2006, RSR exhibits a significant decline in 9 of the 11 subwatersheds (with p < 0.05 according to the Mann–Kendall test statistics). To determine the sensitivity of RSR, the air temperature and precipitation in the forcing dataset are then perturbed. The ratio RSR decreases more significantly, especially during the 1990s and 2000s, when air temperatures have warmed considerably compared to the 1950s. On the other hand, increasing precipitation by a multiplicative factor of 1.1 causes RSR to decrease. As the climate continues to warm, ecological processes and human usage of natural resources in the FRB may be substantially affected by its transition from a snow to a hybrid (nival/pluvial) and even a rain-dominated system.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference69 articles.

1. Adjustment of global gridded precipitation for systematic bias;Adam;J. Geophys. Res.,2003

2. Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia;Adam;J. Climate,2008

3. Correction of global precipitation products for orographic effects;Adam;J. Climate,2006

4. BC Ministry of Forests, Lands, and Natural Resource Operations, 2014: Automated Snow Pillow Data. [Available online at http://bcrfc.env.gov.bc.ca/data/asp/.]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3