MFPANet: Multi-Scale Feature Perception and Aggregation Network for High-Resolution Snow Depth Estimation

Author:

Zhao Liling12ORCID,Chen Junyu12,Shahzad Muhammad3,Xia Min12ORCID,Lin Haifeng4ORCID

Affiliation:

1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Jiangsu Key Laboratory of Big Data Analysis Technology, B-DAT, Nanjing 210044, China

3. Department of Computer Science, University of Reading, Whiteknights, Reading RG6 6DH, UK

4. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

Abstract

Accurate snow depth estimation is of significant importance, particularly for preventing avalanche disasters and predicting flood seasons. The predominant approaches for such snow depth estimation, based on deep learning methods, typically rely on passive microwave remote sensing data. However, due to the low resolution of passive microwave remote sensing data, it often results in low-accuracy outcomes, posing considerable limitations in application. To further improve the accuracy of snow depth estimation, in this paper, we used active microwave remote sensing data. We fused multi-spectral optical satellite images, synthetic aperture radar (SAR) images and land cover distribution images to generate a snow remote sensing dataset (SRSD). It is a first-of-its-kind dataset that includes active microwave remote sensing images in high-latitude regions of Asia. Using these novel data, we proposed a multi-scale feature perception and aggregation neural network (MFPANet) that focuses on improving feature extraction from multi-source images. Our systematic analysis reveals that the proposed approach is not only robust but also achieves high accuracy in snow depth estimation compared to existing state-of-the-art methods, with RMSE of 0.360 and with MAE of 0.128. Finally, we selected several representative areas in our study region and applied our method to map snow depth distribution, demonstrating its broad application prospects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3