High-Order Spectral Filter for the Spherical-Surface Limited Area

Author:

Park Ja-Rin1,Cheong Hyeong-Bin1,Kang Hyun-Gyu1

Affiliation:

1. Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, South Korea

Abstract

Abstract A high-order spectral filter for the spherical-surface limited-area domain, either window or sector type, is presented, where the window domain is finite both in longitude and latitude and the sector domain is finite in longitude, but is ranged from Pole to Pole in latitude. The data given in the physical domain are extended to either extended window or sector domain by padding artificial data that are appropriate for spectral decomposition with half-ranged Fourier series. The high-order filter equation of Laplacian operator type was split into first- or second-order spherical elliptic equations as in the global domain high-order spectral filter. Each low-order elliptic equation is discretized using half-ranged Fourier series both in longitudinal and latitudinal direction. Since the domain is of the spherical geometry, the window domain spectral filter consists of full matrices for each zonal wavenumber and thus performs filtering with O(N3) operation for N × N grids. On the other hand, the sector domain filter performs with efficient O(N2 logN) operation for the same grids, because the matrices can be constructed in tridiagonal form. The error of the filter was analyzed using the eigenfunctions of the filter equation to get insights on data-extension parameters. The limited-area domain filters were tested with localized analytic function and the midlatitude observed data of meteorological variables, and the results were compared to those of the global domain filter. Accuracies of window and sector domain filters were found almost the same, and they turned out to vary with the filter parameters and the location and size of the domain. Application of the limited domain filters to the tropical cyclone initialization scheme showed very close performances to each other for the track and intensity forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3