A Dynamical Core with Double Fourier Series: Comparison with the Spherical Harmonics Method

Author:

Cheong Hyeong-Bin1

Affiliation:

1. Department of Environmental Atmospheric Sciences, Pukyong National University, Pusan, South Korea

Abstract

Abstract A dynamical core of a general circulation model with the spectral method using double Fourier series (DFS) as basis functions is presented. The model uses the hydrostatic balance approximation and sigma coordinate system in the vertical direction and includes no topography. The model atmosphere is divided into 25 layers with equal sigma depths. Prognostic equations for the vorticity, divergence, temperature, and logarithmic surface pressure are solved by the DFS spectral-transform method with the Fourier filtering at middle and high latitudes. A semi-implicit time-stepping procedure, which deals with the eigendecomposition and inversion of the 3D Helmholtz equation associated with the gravity wave terms, is incorporated for the gravity wave–related terms. The DFS model is tested in terms of the solution of the 3D Helmholtz equation, balanced initial state, developing baroclinic waves, and short- and long-term Held–Suarez–Williamson simulations for T42, T62, T84, and T106 resolutions. It is found that the DFS model is stable and accurate and produces almost the same results as the spherical harmonics method (SHM). The normalized difference (i.e., L2 norm error) measured from the results of highest-resolution SHM-T106 showed a desirable convergence of the DFS solution with the resolution. The convergence property, however, varies with the test case and prognostic variables. The total mass (or global integrated surface pressure) is conserved to a good approximation in the long-term simulations. Computing on the high-performance computer NEC SX-5 (parallel-vector architecture) indicated that DFS is more efficient than the SHM and the efficiency increases with the resolution, for example, by factors of 2.09 and 7.68 for T212 and T1022, respectively.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. Arakawa, A. , 1972: Design of the UCLA general circulation model. UCLA Meteorology Department Tech. Rep. 7, 116 pp.

2. Frequency filter for time integrations.;Asselin;Mon. Wea. Rev.,1972

3. Numerical convergence of the dynamics of a GCM.;Boer;Climate Dyn.,1997

4. Double Fourier series on a sphere: Applications to elliptic and vorticity equations.;Cheong;J. Comput. Phys.,2000

5. Application of double Fourier series to shallow water equations on a sphere.;Cheong;J. Comput. Phys.,2000

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3