Beyond Gaussian Statistical Modeling in Geophysical Data Assimilation

Author:

Bocquet Marc1,Pires Carlos A.2,Wu Lin1

Affiliation:

1. Université Paris-Est, CEREA Joint Laboratory École des Ponts ParisTech and EDF R&D, Champs-sur-Marne, and INRIA, Paris Rocquencourt Research Center, Paris, France

2. Universidade de Lisboa, and Instituto Dom Luiz (IDL), Centro de Geofísica da Universidade de Lisboa (CGUL), Lisbon, Portugal

Abstract

Abstract This review discusses recent advances in geophysical data assimilation beyond Gaussian statistical modeling, in the fields of meteorology, oceanography, as well as atmospheric chemistry. The non-Gaussian features are stressed rather than the nonlinearity of the dynamical models, although both aspects are entangled. Ideas recently proposed to deal with these non-Gaussian issues, in order to improve the state or parameter estimation, are emphasized. The general Bayesian solution to the estimation problem and the techniques to solve it are first presented, as well as the obstacles that hinder their use in high-dimensional and complex systems. Approximations to the Bayesian solution relying on Gaussian, or on second-order moment closure, have been wholly adopted in geophysical data assimilation (e.g., Kalman filters and quadratic variational solutions). Yet, nonlinear and non-Gaussian effects remain. They essentially originate in the nonlinear models and in the non-Gaussian priors. How these effects are handled within algorithms based on Gaussian assumptions is then described. Statistical tools that can diagnose them and measure deviations from Gaussianity are recalled. The following advanced techniques that seek to handle the estimation problem beyond Gaussianity are reviewed: maximum entropy filter, Gaussian anamorphosis, non-Gaussian priors, particle filter with an ensemble Kalman filter as a proposal distribution, maximum entropy on the mean, or strictly Bayesian inferences for large linear models, etc. Several ideas are illustrated with recent or original examples that possess some features of high-dimensional systems. Many of the new approaches are well understood only in special cases and have difficulties that remain to be circumvented. Some of the suggested approaches are quite promising, and sometimes already successful for moderately large though specific geophysical applications. Hints are given as to where progress might come from.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference125 articles.

1. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts.;Anderson;Mon. Wea. Rev.,1999

2. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes.;Anderson;Ann. Math. Stat.,1952

3. Variational quality control.;Andersson;Quart. J. Roy. Meteor. Soc.,1999

4. Will the 4D-Var approach be defeated by nonlinearity?;Andersson,2005

5. Analysis and forecast impact of the main humidity observing systems.;Andersson;Quart. J. Roy. Meteor. Soc.,2007

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3