Convection-Driven Melting near the Grounding Lines of Ice Shelves and Tidewater Glaciers

Author:

Jenkins Adrian1

Affiliation:

1. British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom

Abstract

Abstract Subglacial meltwater draining along the bed of fast-flowing, marine-terminating glaciers emerges at the grounding line, where the ice either goes afloat to form an ice shelf or terminates in a calving face. The input of freshwater to the ocean provides a source of buoyancy and drives convective motion alongside the ice–ocean interface. This process is modeled using the theory of buoyant plumes that has previously been applied to the study of the larger-scale circulation beneath ice shelves. The plume grows through entrainment of ocean waters, and the heat brought into the plume as a result drives melting at the ice–ocean interface. The equations are nondimensionalized by using scales appropriate for the region where the subglacial drainage, rather than the subsequent addition of meltwater, supplies the majority of the buoyancy forcing. It is found that the melt rate within this region can be approximated reasonably well by a function that is linear in ocean temperature, has a cube root dependence on the flux of subglacial meltwater, and has a complex dependency on the slope of the ice–ocean interface. The model is used to investigate variability in melting induced by changes in both ocean temperature and subglacial discharge for a number of realistic examples of ice shelves and tidewater glaciers. The results show how warming ocean waters and increasing subglacial drainage both generate increases in melting near the grounding line.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 375 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3