Lateral Mixing in the Pycnocline by Baroclinic Mixed Layer Eddies

Author:

Badin Gualtiero1,Tandon Amit2,Mahadevan Amala1

Affiliation:

1. Department of Earth Sciences, Boston University, Boston, Massachusetts

2. Department of Physics and Department of Estuarine and Ocean Sciences, University of Massachusetts—Dartmouth, North Dartmouth, Massachusetts

Abstract

Abstract Using a process study model, the effect of mixed layer submesoscale instabilities on the lateral mixing of passive tracers in the pycnocline is explored. Mixed layer eddies that are generated from the baroclinic instability of a front within the mixed layer are found to penetrate into the pycnocline leading to an eddying flow field that acts to mix properties laterally along isopycnal surfaces. The mixing of passive tracers released on such isopycnal surfaces is quantified by estimating the variance of the tracer distribution over time. The evolution of the tracer variance reveals that the flow undergoes three different turbulent regimes. The first regime, lasting about 3–4 days (about 5 inertial periods) exhibits near-diffusive behavior; dispersion of the tracer grows nearly linearly with time. In the second regime, which lasts for about 10 days (about 14 inertial periods), tracer dispersion exhibits exponential growth because of the integrated action of high strain rates created by the instabilities. In the third regime, tracer dispersion follows Richardson’s power law. The Nakamura effective diffusivity is used to study the role of individual dynamical filaments in lateral mixing. The filaments, which carry a high concentration of tracer, are characterized by the coincidence of large horizontal strain rate with large vertical vorticity. Within filaments, tracer is sheared without being dispersed, and consequently the effective diffusivity is small in filaments. While the filament centers act as barriers to transport, eddy fluxes are enhanced at the filament edges where gradients are large.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3