Theoretical analysis of the zigzag instability of a vertical columnar vortex pair in a strongly stratified fluid

Author:

BILLANT PAUL,CHOMAZ JEAN-MARC

Abstract

A general theoretical account is proposed for the zigzag instability of a vertical columnar vortex pair recently discovered in a strongly stratified experiment.The linear inviscid stability of the Lamb–Chaplygin vortex pair is analysed by a multiple-scale expansion analysis for small horizontal Froude number (Fh = U/LhN, where U is the magnitude of the horizontal velocity, Lh the horizontal lengthscale and N the Brunt–Väisälä frequency) and small vertical Froude number (Fv = U/LvN, where Lv is the vertical lengthscale) using the scaling of the equations of motion introduced by Riley, Metcalfe & Weissman (1981). In the limit Fv = 0, these equations reduce to two-dimensional Euler equations for the horizontal velocity with undetermined vertical dependence. Thus, at leading order, neutral modes of the flow are associated, among others, to translational and rotational invariances in each horizontal plane. To each broken invariance is related a phase variable that may vary freely along the vertical. Conservation of mass and potential vorticity impose at higher order the evolution equations governing the phase variables that we derive for Fh [Lt ] 1 and Fv [Lt ] 1 in the spirit of phase dynamics techniques established for periodic patterns. In agreement with the experimental observations, this asymptotic analysis shows the existence of an instability consisting of a vertically modulated rotation and a translation of the columnar vortex pair perpendicular to the travelling direction. The dispersion relation as well as the spatial eigenmode of the zigzag instability are determined. The analysis predicts that the most amplified vertical wavelength should scale as U/N and the maximum growth rate as U/Lh.Our main finding is thus that the typical thickness of the ensuing layers will be such that Fv = O(1) and not Fv [Lt ] 1 as assumed by Riley et al. (1981) and Lilly (1983). This implies that such strongly stratified flows are not described by two- dimensional horizontal equations. These results may help to understand the layering commonly observed in stratified turbulence and the fundamental differences with strictly two-dimensional turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3