Affiliation:
1. Center for Satellite Applications and Research, NOAA/NESDIS, Camp Springs, Maryland
2. Center for Satellite Applications and Research, NOAA/NESDIS, Camp Springs, Maryland, and Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
Abstract
Abstract
The Microwave Sounding Unit (MSU) onboard the National Oceanic and Atmospheric Administration polar-orbiting satellites measures the atmospheric temperature from the surface to the lower stratosphere under all weather conditions, excluding precipitation. Although designed primarily for monitoring weather processes, the MSU observations have been extensively used for detecting climate trends, and calibration errors are a major source of uncertainty. To reduce this uncertainty, an intercalibration method based on the simultaneous nadir overpass (SNO) matchups for the MSU instruments on satellites NOAA-10, -11, -12, and -14 was developed. Due to orbital geometry, the SNO matchups are confined to the polar regions, where the brightness temperature range is slightly smaller than the global range. Nevertheless, the resulting calibration coefficients are applied globally to the entire life cycle of an MSU satellite.
Such intercalibration reduces intersatellite biases by an order of magnitude compared to prelaunch calibration and, thus, results in well-merged time series for the MSU channels 2, 3, and 4, which respectively represent the deep layer temperature of the midtroposphere (T2), tropopause (T3), and lower stratosphere (T4). Focusing on the global atmosphere over ocean surfaces, trends for the SNO-calibrated T2, T3, and T4 are, respectively, 0.21 ± 0.07, 0.08 ± 0.08, and −0.38 ± 0.27 K decade−1 from 1987 to 2006. These trends are independent of the number of limb-corrected footprints used in the dataset, and trend differences are marginal for varying bias correction techniques for merging the overlapping satellites on top of the SNO calibration.
The spatial pattern of the trends reveals the tropical midtroposphere to have warmed at a rate of 0.28 ± 0.19 K decade−1, while the Arctic atmosphere warmed 2 to 3 times faster than the global average. The troposphere and lower stratosphere, however, cooled across the southern Indian and Atlantic Oceans adjacent to the Antarctic continent. To remove the stratospheric cooling effect in T2, channel trends from T2 and T3 (T23) and T2 and T4 (T24) were combined. The trend patterns for T23 and T24 are in close agreement, suggesting internal consistencies for the trend patterns of the three channels.
Publisher
American Meteorological Society
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献