Mid‐Tropospheric Layer Temperature Record Derived From Satellite Microwave Sounder Observations With Backward Merging Approach

Author:

Zou Cheng‐Zhi1ORCID,Xu Hui2ORCID,Hao Xianjun3,Liu Qian3

Affiliation:

1. Center for Satellite Applications and Research NOAA/NESDIS College Park MD USA

2. ESSIC/CISESS University of Maryland College Park MD USA

3. Environmental Science and Technology Center College of Science George Mason University Fairfax VA USA

Abstract

AbstractWe present a new version (v5.0) of the NOAA Center for Satellite Applications and Research (STAR) mid‐tropospheric temperature (TMT) time series. This data set uses a backward‐merging approach to intercalibrate 16 satellite‐based microwave sounding records. The instrument observations included those from the Microwave Sounding Unit (MSU) during 1979–2004, Advanced Microwave Sounding Unit‐A (AMSU‐A) during 1998–2017, and Advanced Technology Microwave Sounder (ATMS) from 2011 to present. A TMT time series during 2002–present based on satellite microwave observations in stable sun‐synchronous orbits was used as a reference in the backward merging process in which earlier satellites were adjusted and merged to the reference. Observations from earlier satellites were recalibrated to remove their calibration drifting errors relative to the reference using sequential overlapping observations. This included removal of spurious warming drifts in the MSU observations onboard NOAA‐11, NOAA‐12, and NOAA‐14 and a spurious cooling drift in the NOAA‐15 AMSU‐A observations. Temperature changes resulting from diurnal sampling drifts were corrected using an observation‐based semi‐physical model developed in this study. Other adjustments included channel frequency differences between MSU and AMSU‐A companion channels and instrument blackbody warm target effect on observed radiances. These adjustments resulted in inter‐consistent TMT records spanning MSU, AMSU‐A, and ATMS. The merged time series produced a global mean TMT trend of 0.092 ± 0.043 K/decade during 1979–2021 and a total tropospheric trend of 0.142 ± 0.045 K/decade after removal of a stratospheric cooling effect in TMT. Remarkably, the total tropospheric trends during the latest half period were nearly doubled the earlier half period over the global ocean.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3