Tropical Water Vapor and Cloud Feedbacks in Climate Models: A Further Assessment Using Coupled Simulations

Author:

Sun De-Zheng1,Yu Yongqiang2,Zhang Tao1

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences/University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

2. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract By comparing the response of clouds and water vapor to ENSO forcing in nature with that in Atmospheric Model Intercomparison Project (AMIP) simulations by some leading climate models, an earlier evaluation of tropical cloud and water vapor feedbacks has revealed the following two common biases in the models: 1) an underestimate of the strength of the negative cloud albedo feedback and 2) an overestimate of the positive feedback from the greenhouse effect of water vapor. Extending the same analysis to the fully coupled simulations of these models as well as other Intergovernmental Panel on Climate Change (IPCC) coupled models, it is found that these two biases persist. Relative to the earlier estimates from AMIP simulations, the overestimate of the positive feedback from water vapor is alleviated somewhat for most of the coupled simulations. Improvements in the simulation of the cloud albedo feedback are only found in the models whose AMIP runs suggest either a positive or nearly positive cloud albedo feedback. The strength of the negative cloud albedo feedback in all other models is found to be substantially weaker than that estimated from the corresponding AMIP simulations. Consequently, although additional models are found to have a cloud albedo feedback in their AMIP simulations that is as strong as in the observations, all coupled simulations analyzed in this study have a weaker negative feedback from the cloud albedo and therefore a weaker negative feedback from the net surface heating than that indicated in observations. The weakening in the cloud albedo feedback is apparently linked to a reduced response of deep convection over the equatorial Pacific, which is in turn linked to the excessive cold tongue in the mean climate of these models. The results highlight that the feedbacks of water vapor and clouds—the cloud albedo feedback in particular—may depend on the mean intensity of the hydrological cycle. Whether the intermodel variations in the feedback from cloud albedo (water vapor) in the ENSO variability are correlated with the intermodel variations of the feedback from cloud albedo (water vapor) in global warming has also been examined. While a weak positive correlation between the intermodel variations in the feedback of water vapor during ENSO and the intermodel variations in the water vapor feedback during global warming was found, there is no significant correlation found between the intermodel variations in the cloud albedo feedback during ENSO and the intermodel variations in the cloud albedo feedback during global warming. The results suggest that the two common biases revealed in the simulated ENSO variability may not necessarily be carried over to the simulated global warming. These biases, however, highlight the continuing difficulty that models have in simulating accurately the feedbacks of water vapor and clouds on a time scale of the observations available.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation and attribution of shortwave feedbacks to ENSO in CMIP6 models;Climate Dynamics;2024-05-18

2. Evaluation and Attribution of Shortwave Feedbacks to ENSO in CMIP6 models;2022-10-12

3. ENSO Asymmetry in CMIP6 Models;Journal of Climate;2022-09-01

4. Tropical Cyclone Impacts;Extreme Events and Climate Change;2021-04-02

5. Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package;Bulletin of the American Meteorological Society;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3