Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package

Author:

Planton Yann Y.1,Guilyardi Eric2,Wittenberg Andrew T.3,Lee Jiwoo4,Gleckler Peter J.4,Bayr Tobias5,McGregor Shayne6,McPhaden Michael J.7,Power Scott8,Roehrig Romain9,Vialard Jérôme1,Voldoire Aurore9

Affiliation:

1. LOCEAN-IPSL, CNRS-IRD-MNHN-Sorbonne Université, Paris, France

2. LOCEAN-IPSL, CNRS-IRD-MNHN-Sorbonne Université, Paris, France, and National Centre for Atmospheric Science—Climate, University of Reading, Reading, United Kingdom

3. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

4. Lawrence Livermore National Laboratory, Livermore, California

5. GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany

6. School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

7. NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

8. School of Earth, Atmosphere and Environment, Monash University, Clayton, and Australian Bureau of Meteorology, Melbourne, Victoria, Australia

9. CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Abstract

AbstractEl Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate variability on the planet, with far-reaching global impacts. It is therefore key to evaluate ENSO simulations in state-of-the-art numerical models used to study past, present, and future climate. Recently, the Pacific Region Panel of the International Climate and Ocean: Variability, Predictability and Change (CLIVAR) Project, as a part of the World Climate Research Programme (WCRP), led a community-wide effort to evaluate the simulation of ENSO variability, teleconnections, and processes in climate models. The new CLIVAR 2020 ENSO metrics package enables model diagnosis, comparison, and evaluation to 1) highlight aspects that need improvement; 2) monitor progress across model generations; 3) help in selecting models that are well suited for particular analyses; 4) reveal links between various model biases, illuminating the impacts of those biases on ENSO and its sensitivity to climate change; and to 5) advance ENSO literacy. By interfacing with existing model evaluation tools, the ENSO metrics package enables rapid analysis of multipetabyte databases of simulations, such as those generated by the Coupled Model Intercomparison Project phases 5 (CMIP5) and 6 (CMIP6). The CMIP6 models are found to significantly outperform those from CMIP5 for 8 out of 24 ENSO-relevant metrics, with most CMIP6 models showing improved tropical Pacific seasonality and ENSO teleconnections. Only one ENSO metric is significantly degraded in CMIP6, namely, the coupling between the ocean surface and subsurface temperature anomalies, while the majority of metrics remain unchanged.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3