Decadal Modulation of ENSO in a Hybrid Coupled Model

Author:

Burgman Robert J.1,Schopf Paul S.2,Kirtman Ben P.3

Affiliation:

1. University of Miami, Miami, Florida

2. George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

3. University of Miami, Miami, Florida, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Abstract

Abstract Decadal variations in the amplitude of El Niño and the Southern Oscillation have been the subject of great interest in the literature for the past decade. One theory suggests that ENSO is best described as a stable system driven by linear dynamics and that stochastic atmospheric forcing is responsible for the development and modulation of ENSO on interannual as well as decadal time scales. Another theory suggests that ENSO is driven by strong nonlinear coupled feedbacks between the ocean and atmosphere and low frequency changes in ENSO amplitude are driven by decadal changes in the tropical Pacific mean state. Unfortunately, the observed record is too short to collect reliable statistics for such low frequency behavior. A hybrid coupled model composed of a simple statistical atmosphere coupled to the Poseidon isopycnal ocean model has been developed for the study of ENSO decadal variability. The model simulates realistic ENSO variability on interannual and decadal time scales with negligible climate drift over 1000 years. Through analysis and experimentation the authors show that low frequency changes in the atmospheric “weather noise” drive changes in the tropical Pacific mean state leading to changes in the amplitude of ENSO on decadal time scales. Additional model simulations suggest that, while predictability is limited by the presence of atmospheric noise, there are extended periods when the coupled instability, strengthened by changes in the mean state, is insensitive to noise on interannual time scales. The relationship between decadal modulation of ENSO and mean state changes resides somewhere between the linear damped stochastically forced theory and the strongly unstable theory. Unlike the strongly unstable system, changes in ENSO amplitude on longer time scales are determined by the stochastic forcing. The stochastic forcing is not necessary in this model to sustain ENSO; however, its presence is crucial for low frequency changes in the mean state of the tropical Pacific. The strong relationship between the mean state and ENSO amplitude modulation in the model is in opposition to the linear damped stochastically forced theory. The fact that changes in the tropical Pacific mean state lead directly to changes in ENSO amplitude and predictability has positive implications for predictability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3