Insights into ENSO Diversity from an Intermediate Coupled Model. Part II: Role of Nonlinear Dynamics and Stochastic Forcing

Author:

Geng Licheng1,Jin Fei-Fei1

Affiliation:

1. a Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, Honolulu, Hawaii

Abstract

Abstract In this study, we investigate how a single leading linear El Niño–Southern Oscillation (ENSO) mode, as studied in Part I, leads to the irregular coexistence of central Pacific (CP) and eastern Pacific (EP) ENSO, a phenomenon known as ENSO spatiotemporal diversity. This diversity is fundamentally generated by deterministic nonlinear pathways to chaos via the period-doubling route and, more prevailingly, the subharmonic resonance route with the presence of a seasonally varying basic state. When residing in the weakly nonlinear regime, the coupled system sustains a weak periodic oscillation with a mixed CP/EP pattern as captured by the linear ENSO mode. With a stronger nonlinearity effect, the ENSO behavior experiences a period-doubling bifurcation. The single ENSO orbit splits into coexisting CP-like and EP-like ENSO orbits. A sequence of period-doubling bifurcation results in an aperiodic oscillation featuring irregular CP and EP ENSO occurrences. The overlapping of subharmonic resonances between ENSO and the seasonal cycle allows this ENSO irregularity and diversity to be more readily excited. In the strongly nonlinear regime, the coupled system is dominated by regular EP ENSO. The deterministic ENSO spatiotemporal diversity is thus confined to a relatively narrow range corresponding to a moderately unstable ENSO mode. Stochastic forcing broadens this range and allows ENSO diversity to occur when the ENSO mode is weakly subcritical. A close relationship among a weakened mean zonal temperature gradient, stronger ENSO activity, and more (fewer) occurrences of EP (CP) ENSO is noted, indicating that ENSO–mean state interaction may yield ENSO regime modulations on the multidecadal time scale.

Funder

National Science Foundation

Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference78 articles.

1. Nonlinearity and asymmetry of ENSO;An, S.-I.,2004

2. Changes in ENSO activity during the last 6,000 years modulated by background climate state;An, S.-I.,2018

3. Coexistence of equatorial coupled modes of ENSO;Bejarano, L.,2008

4. Decadal modulation of ENSO in a hybrid coupled model;Burgman, R. J.,2008

5. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming;Callahan, C. W.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3