Influence of ENSO on the West African Monsoon: Temporal Aspects and Atmospheric Processes

Author:

Joly Mathieu1,Voldoire Aurore1

Affiliation:

1. CNRM/GAME, Météo-France/CNRS, Toulouse, France

Abstract

Abstract A significant part of the West African monsoon (WAM) interannual variability can be explained by the remote influence of El Niño–Southern Oscillation (ENSO). Whereas the WAM occurs in the boreal summer, ENSO events generally peak in late autumn. Statistics show that, in the observations, the WAM is influenced either during the developing phase of ENSO or during the decay of some long-lasting La Niña events. The timing of ENSO thus seems essential to the teleconnection process. Composite maps for the developing ENSO illustrate the large-scale mechanisms of the teleconnection. The most robust features are a modulation of the Walker circulation and a Kelvin wave response in the high troposphere. In the Centre National de Recherches Météorologiques Coupled Global Climate Model, version 3 (CNRM-CM3), the teleconnection occurs unrealistically at the end of ENSO events. An original sensitivity experiment is presented in which the ocean component is forced with a reanalyzed wind stress over the tropical Pacific. This allows for the reproduction of the observed ENSO chronology in the coupled simulation. In CNRM-CM3, the atmospheric response to ENSO is slower than in the reanalysis data, so the influence on the WAM is delayed by a year. The two principal features of the teleconnection are the timing of ENSO onsets and the time lag of the atmospheric response. Both are assessed separately in 16 twentieth-century simulations of the third phase of the Coupled Model Intercomparison Project (CMIP3). The temporal aspects of the ENSO teleconnection are reproduced with difficulty in state-of-the-art coupled models. Only four models simulate an impact of ENSO on the WAM during the developing phase.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3