Time Variation of Effective Climate Sensitivity in GCMs

Author:

Williams K. D.1,Ingram W. J.2,Gregory J. M.3

Affiliation:

1. Met Office Hadley Centre, Exeter, United Kingdom

2. Met Office Hadley Centre, Exeter, and Department of Physics, University of Oxford, Oxford, United Kingdom

3. Met Office Hadley Centre, Exeter, and Walker Institute for Climate System Research, Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

Abstract Effective climate sensitivity is often assumed to be constant (if uncertain), but some previous studies of general circulation model (GCM) simulations have found it varying as the simulation progresses. This complicates the fitting of simple models to such simulations, as well as having implications for the estimation of climate sensitivity from observations. This study examines the evolution of the feedbacks determining the climate sensitivity in GCMs submitted to the Coupled Model Intercomparison Project. Apparent centennial-time-scale variations of effective climate sensitivity during stabilization to a forcing can be considered an artifact of using conventional forcings, which only allow for instantaneous effects and stratospheric adjustment. If the forcing is adjusted for processes occurring on time scales that are short compared to the climate stabilization time scale, then there is little centennial-time-scale evolution of effective climate sensitivity in any of the GCMs. Here it is suggested that much of the apparent variation in effective climate sensitivity identified in previous studies is actually due to the comparatively fast forcing adjustment. Persistent differences are found in the strength of the feedbacks between the coupled atmosphere–ocean (AO) versions and their atmosphere–mixed layer ocean (AML) counterparts (the latter are often assumed to give the equilibrium climate sensitivity of the AOGCM). The AML model can typically only estimate the equilibrium climate sensitivity of the parallel AO version to within about 0.5 K. The adjustment to the forcing to account for comparatively fast processes varies in magnitude and sign between GCMs, as well as differing between AO and AML versions of the same model. There is evidence from one AOGCM that the forcing adjustment may take a couple of decades, with implications for observationally based estimates of equilibrium climate sensitivity. It is suggested that at least some of the spread in twenty-first-century global temperature predictions between GCMs is due to differing adjustment processes, hence work to understand these differences should be a priority.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3