A New Look at Stratospheric Sudden Warmings. Part III: Polar Vortex Evolution and Vertical Structure

Author:

Matthewman N. J.1,Esler J. G.1,Charlton-Perez A. J.2,Polvani L. M.3

Affiliation:

1. Department of Mathematics, University College London, London, United Kingdom

2. Department of Meteorology, University of Reading, Reading, United Kingdom

3. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Abstract

Abstract The evolution of the Arctic polar vortex during observed major midwinter stratospheric sudden warmings (SSWs) is investigated for the period 1957–2002, using 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) Ertel’s potential vorticity (PV) and temperature fields. Time-lag composites of vertically weighted PV, calculated relative to the SSW onset time, are derived for both vortex-displacement SSWs and vortex-splitting SSWs, by averaging over the 15 recorded displacement and 13 splitting events. The evolving vertical structure of the polar vortex during a typical SSW of each type is clearly illustrated by plotting an isosurface of the composite PV field, and is shown to be very close to that observed during representative individual events. Results are verified by comparison with an elliptical diagnostic vortex moment technique. For both types of SSW, little variation is found between individual events in the orientation of the developing vortex relative to the underlying topography; that is, the location of the vortex during SSWs of each type is largely fixed in relation to the earth’s surface. During each type of SSW, the vortex is found to have a distinctive vertical structure. Vortex-splitting events are typically barotropic, with the vortex split occurring near simultaneously over a large altitude range (20–40 km). In the majority of cases, of the two daughter vortices formed, it is the “Siberian” vortex that dominates over its “Canadian” counterpart. In contrast, displacement events are characterized by a very clear baroclinic structure; the vortex tilts significantly westward with height, so that the top and bottom of the vortex are separated by nearly 180° longitude before the upper vortex is sheared away and destroyed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3