Atlantic Subtropical Storms. Part II: Climatology

Author:

Guishard Mark P.1,Evans Jenni L.1,Hart Robert E.2

Affiliation:

1. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

2. Department of Meteorology, The Florida State University, Tallahassee, Florida

Abstract

Abstract A 45-yr climatology of subtropical cyclones (ST) for the North Atlantic is presented and analyzed. The STs pose a warm-season forecasting problem for subtropical locations such as Bermuda and the southern United States because of the potentially rapid onset of gale-force winds close to land. Criteria for identification of ST have been developed based on an accompanying case-study analysis. These criteria are applied here to the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) to construct a consistent historical database of 197 North Atlantic ST in 45 yr. Because ST may eventually evolve into tropical cyclones, sea surface temperatures (SST) and vertical wind shear conditions for tropical cyclogenesis are contrasted with the conditions for ST genesis identified here. Around 60% of the 197 ST formed over SST in excess of 25°C in a region of weak static stability. Further, the mean environmental vertical wind shear at formation for these storms is 10.7 m s−1, a magnitude generally considered to be unfavorable for tropical cyclogenesis. The STs have hybrid structure, so the potential for baroclinic and thermodynamic development is explored through the baroclinic zone (characterized by the Eady growth rate σ) and SST field. Seasonal evolution in the location and frequency of ST formation in the basin is demonstrated to correspond well to the changing region of overlap between SST > 25°C and σ > 0.1 day−1. This climatology is contrasted with two alternative ST datasets. The STs contribute to 12% of tropical cyclones (TC) in the current National Hurricane Center (NHC) Hurricane Database (HURDAT); this equivalent to about 1 in 8 genesis events from an incipient ST disturbance. However, with the addition of 144 ST that are newly identified in this climatology (and not presently in HURDAT) and the reclassification (as not ST) of 65 existing storms in HURDAT, 197/597 storms (33%) in the newly combined database are ST, which emphasizes the potential importance of these warm-season storms.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference44 articles.

1. Extratropical transition of Hurricanes Michael and Karen: Storm reconnaissance with the Canadian Convair 580 aircraft.;Abraham,2002

2. A cluster analysis derived synoptic evolution of extratropical transition in the North Atlantic.;Arnott,2004

3. Tropical storm formation in a baroclinic environment.;Bosart;Mon. Wea. Rev.,1991

4. The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean.;Bracken;Mon. Wea. Rev.,2000

5. There was enough warning.;Breen,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3