Tropical Transition of Tropical Storm Kirogi (2012) over the Western North Pacific: Synoptic Analysis and Mesoscale Simulation

Author:

Yanase Wataru1ORCID,Shimada Udai1,Kitabatake Naoko2,Tochimoto Eigo3

Affiliation:

1. a Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

2. b Meteorological College, Japan Meteorological Agency, Kashiwa, Japan

3. c National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan

Abstract

Abstract Tropical transition (TT) is a cyclogenesis process in which a baroclinic disturbance is transformed into a tropical cyclone. Many studies have analyzed TT events over the North Atlantic. This study assesses TT processes from a possible subtropical cyclone to Tropical Storm Kirogi at a relatively high latitude over the western North Pacific in an environment of enhanced baroclinicity in August 2012. Analyses based on satellite observations, the JRA-55 reanalysis, and a simulation with 2.5-km horizontal grid spacing demonstrate three stages during the TT: the baroclinic, intermediate, and convective stages. Over the baroclinic stage, Kirogi had an asymmetric comma-shaped cloud pattern with convection in the northern and eastern parts of the cyclone. This convection is attributed to quasigeostrophic forcing and frontogenesis associated with advection of warm and moist air. Vorticity locally generated by this convection was advected to the cyclone center by cyclone-relative northerly flow. Kirogi also had a shallow warm-core structure due to the interaction with an upper-level cold trough extending from the midlatitudes. In the intermediate stage, the warm and moist air in the lower troposphere and the cold trough in the upper troposphere wrapped around Kirogi. In the convective stage, Kirogi attained characteristics of a typical tropical cyclone with convection concentrated near the cyclone center and a deep warm-core structure. These results demonstrate that baroclinic processes can directly trigger formation of a tropical storm at relatively high latitudes over the western North Pacific in a similar manner to that over the North Atlantic. Significance Statement Tropical cyclogenesis is an important process for early identification of tropical cyclone hazards. Tropical transition is a tropical cyclogenesis process that is triggered by a subtropical or extratropical disturbance. It is unique to relatively high latitudes and has social importance particularly for midlatitude countries. There have been fewer studies on tropical transition over the western North Pacific than over the North Atlantic. This study demonstrates the dynamics of a distinct tropical transition event that led to the formation of Tropical Storm Kirogi (2012) at a relatively high latitude over the western North Pacific.

Funder

Japan Society for the Promotion of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference63 articles.

1. American Meteorological Society, 2022: Subtropical cyclone. Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Subtropical_cyclone.

2. The parametrization of surface fluxes in large‐scale models under free convection;Beljaars, A.,1995

3. Tropical transition of an unnamed, high-latitude, tropical cyclone over the eastern North Pacific;Bentley, A. M.,2016

4. A dynamically based climatology of subtropical cyclones that undergo tropical transition in the North Atlantic basin;Bentley, A. M.,2016

5. Upper-tropospheric precursors to the formation of subtropical cyclones that undergo tropical transition in the North Atlantic basin;Bentley, A. M.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3