Applications of Bivariate Fourier Series for Solving the Poisson Equation in Limited-Area Modeling of the Atmosphere: Higher Accuracy with a Boundary Buffer Strip Discarded and an Improved Order-Raising Procedure

Author:

Boyd John P.1,Deng Difei2,Chen Qiu-Shi3,Gao Shouting3

Affiliation:

1. Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, Michigan, and Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Graduate University of Chinese Academy of Sciences, and Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract Bivariate Fourier series have many benefits in limited-area modeling (LAM), weather forecasting, and meteorological data analysis. However, atmospheric data are not spatially periodic on the LAM domain (“window”), which can be normalized to the unit square (x, y) ∈ [0, 1] ⊗ [0, 1] by rescaling the coordinates. Most Fourier LAM meteorology has employed rather low-order methods that have been quite successful in spite of Gibbs phenomenon at the boundaries of the artificial periodicity window. In this article, the authors explain why. Because data near the boundary between the high-resolution LAM window and the low-resolution global model are necessarily suspect, corrupted by the discontinuity in resolution, meteorologists routinely ignore LAM results in a buffer strip of nondimensional width D, and analyze only the Fourier sums in the smaller domain (x, y) ∈ [D, 1 − D] ⊗ [D, 1 − D]. It is shown that the error in a one-dimensional Fourier series with N terms or in a two-dimensional series with N2 terms, is smaller by a factor of N on a boundary-buffer-discarded domain than on the full unit square. A variety of procedures for raising the order of Fourier series convergence are described, and it is explained how the deletion of the boundary strip greatly simplifies and improves these enhancements. The prime exemplar is solving the Poisson equation with homogeneous boundary conditions by sine series, but the authors also discuss the Laplace equation with inhomogeneous boundary conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3