An OSSE-Based Evaluation of Hybrid Variational–Ensemble Data Assimilation for the NCEP GFS. Part II: 4DEnVar and Hybrid Variants

Author:

Kleist Daryl T.1,Ide Kayo2

Affiliation:

1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

2. Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, and Institute for Physical Science and Technology, and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract This work describes the formulation of a hybrid four-dimensional ensemble--variational (4DEnVar) algorithm and initialization options utilized within the National Centers for Environmental Prediction global data assimilation system. Initialization schemes that are proposed for use are the tangent-linear normal mode constraint, weak constraint digital filter, and a combination thereof. An observing system simulation experiment is carried out to evaluate the impact of utilizing hybrid 4DEnVar with various initialization techniques. The experiments utilize a dual-resolution configuration, where the ensemble is run at roughly half the resolution of the deterministic component. It is found that by going from 3D to 4D, analysis error is reduced for most variables and levels. The inclusion of a time-invariant static covariance when used without a normal mode–based strong constraint is found to have a small, positive impact on the analysis. The experiments show that the weak constraint digital filter degrades the quality of analysis, due to the use of hourly states to prescribe high-frequency noise. It is found that going from 3D to 4D ensemble covariances has a relatively larger impact in the extratropics, whereas the original inclusion of ensemble-based covariances was found to have the largest impact in the tropics. The improvements found in going from 3D to 4D covariances in the hybrid EnVar formulation are not as large as was found in Part I from the original introduction of the hybrid algorithm. The analyses generated by the 4D hybrid scheme are found to yield slightly improved extratropical height and wind forecasts, with smaller impacts on other variables and in general in the tropics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3