Numerical Simulations of Island-Induced Circulations and Windward Katabatic Flow over the Guadeloupe Archipelago

Author:

Cécé Raphaël1,Bernard Didier1,d’Alexis Christophe1,Dorville Jean-François2

Affiliation:

1. Department of Physics, University of the French West Indies and French Guiana, Pointe-à-Pitre, Guadeloupe

2. Department of Physics, University of West Indies, Kingston, Jamaica

Abstract

Abstract This article deals with the first high-resolution numerical modeling of the weather over the small and high islands of the Guadeloupe archipelago. Its main goal is to analyze the mechanisms that drive local-scale airflow circulations over this archipelago, using the 1-km Weather Research and Forecasting Model (WRF). Three meteorological situations corresponding to weak trade winds (WTW), medium trade winds (MTW), and strong trade winds (STW) have been selected and are linked with local Froude number values of 0.21, 0.41, and 0.82, respectively. For these three weather types, simulated typical meteorological variables present a good agreement with observational data at several locations. The 48-h simulations allow the completion of the previous coarse observational descriptions that did not include a map of the wind, skin temperature, cloud cover, and sensible heat flux for the whole archipelago. The expected local wind regime areas (windward, inland, and leeward) are retrieved in the model outputs, including the predominance of thermal and orographic effects over Grande-Terre Island and Basse-Terre Island, respectively. Under STW, the convection is inhibited and the local circulations are driven by the orography. In the case of WTW, the model simulates well a katabatic wind, inducing cold nocturnal reversed flow on the windward coast of Basse-Terre. This circulation, opposing the trade winds, extends to the sea and Grande-Terre Island. This flow has a maximum wind speed of 4.7 m s−1. This particular flow occurring in the most densely populated area produces an important nocturnal pollution period due to industrial sources (the diesel power plants of the archipelago).

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3