Thermodynamic Processes Driving Thermal Circulations on Slopes: Modeling Anabatic and Katabatic Flows on Reunion Island

Author:

El Gdachi S.1ORCID,Tulet P.2,Réchou A.1,Burnet F.3ORCID,Mouchel‐Vallon C.2ORCID,Jambert C.2,Leriche M.45ORCID

Affiliation:

1. Laboratoire de l’Atmosphère et des Cyclones (LACy) UMR 8105 Université de la Réunion Saint‐Denis France

2. Laboratoire d’Aérologie (LAERO) UMR 5560 CNRS UT3 IRD Toulouse France

3. Centre National de Recherches Météorologiques (CNRM) UMR 3589 CNRS Université de Toulouse Toulouse France

4. Laboratoire de Météorologie Physique (LaMP) UMR 6016 CNRS Université Clermont Auvergne Aubière France

5. Département des Sciences de la Terre et de L'atmosphère Centre Pour l’étude et la Simulation du Climat à L’échelle Régionale (ESCER) Université du Québec à Montréal Montréal QC Canada

Abstract

AbstractThis study investigates thermal circulations on Reunion Island (21°07’S 55°32’E), focusing on the complex terrain of the region. Observations from the BIO‐MAÏDO campaign, along with 2 days of high‐resolution simulation using the MesoNH model, were analyzed to understand the thermally‐driven mechanisms. This simulation was conducted with a horizontal resolution of 100 m and employed a vertically stretched grid, achieving a resolution of 1 m at the lowest levels. Two distinct wind regimes were identified, characterized by katabatic flows prevailing within a 30 m thick layer during nighttime, and an anabatic flow manifesting within a layer spanning from 150 to 200 m during the daytime. The simulation was confirmed through validation with surface measurements, and thus enabling a detailed study of thermal breeze circulations. Results reveal that the intensity of trade winds significantly influences the development of thermal circulations. Complex layered structures in the atmosphere were also identified. At an intensity of 7 m s−1, trade winds impede the development of thermal circulations atop the slope, and result in the emergence of a convergence zone between local and regional circulations. The analysis of the breeze establishment period indicates that the katabatic flow stabilizes in 35 min, quicker than the anabatic flow, which takes 110 min. Momentum and heat budget analysis provide insights into the primary drivers of thermal circulations: buoyancy acceleration, influenced by local surface heating during anabatic flow onset, and local surface cooling during katabatic flow onset.

Funder

Agence Nationale de la Recherche

Publisher

American Geophysical Union (AGU)

Reference44 articles.

1. Blein S.(2016).Observation et modélisation de couche limite atmosphérique stable en relief complexe: Le processus turbulent d'écoulement catabatique (phdthesis Université Grenoble Alpes). Retrieved fromhttps://theses.hal.science/tel‐01622676

2. Numerical Simulations of Island-Scale Airflow over Maui and the Maui Vortex under Summer Trade Wind Conditions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3