Influence of Assimilating Satellite-Derived Atmospheric Motion Vector Observations on Numerical Analyses and Forecasts of Tropical Cyclone Track and Intensity

Author:

Wu Ting-Chi1,Liu Hui2,Majumdar Sharanya J.1,Velden Christopher S.3,Anderson Jeffrey L.2

Affiliation:

1. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

2. National Center for Atmospheric Research, Boulder, Colorado

3. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract The influence of assimilating enhanced atmospheric motion vectors (AMVs) on mesoscale analyses and forecasts of tropical cyclones (TC) is investigated. AMVs from the geostationary Multifunctional Transport Satellite (MTSAT) are processed by the Cooperative Institute for Meteorological Satellite Studies (CIMSS, University of Wisconsin–Madison) for the duration of Typhoon Sinlaku (2008), which included a rapid intensification phase and a slow, meandering track. The ensemble Kalman filter and the Weather Research and Forecasting Model are utilized within the Data Assimilation Research Testbed. In addition to conventional observations, three different groups of AMVs are assimilated in parallel experiments: CTL, the same dataset assimilated in the NCEP operational analysis; CIMSS(h), hourly datasets processed by CIMSS; and CIMSS(h+RS), the dataset including AMVs from the rapid-scan mode. With an order of magnitude more AMV data assimilated, the CIMSS(h) analyses exhibit a superior track, intensity, and structure to CTL analyses. The corresponding 3-day ensemble forecasts initialized with CIMSS(h) yield smaller track and intensity errors than those initialized with CTL. During the period when rapid-scan AMVs are available, the CIMSS(h+RS) analyses offer additional modifications to the TC and its environment. In contrast to many members in the ensemble forecasts initialized from the CTL and CIMSS(h) analyses that predict an erroneous landfall in China, the CIMSS(h+RS) members capture recurvature, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. Further studies to identify optimal strategies for assimilating integrated full-resolution multivariate data from satellites are under way.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3