A Space-Time Variational Method for Retrieving Upper-Level Vortex Winds from GOES-16 Rapid Scans over Hurricanes

Author:

Xu Qin1ORCID,Wei Li2,Nai Kang12,Zhang Huanhuan23,Rabin Robert4

Affiliation:

1. National Severe Storms Laboratory (NSSL), Office of Atmospheric Research (OAR), National Oceanic and Atmospheric Administration (NOAA), Norman, OK 73072, USA

2. Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, OK 73072, USA

3. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

4. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

A space-time variational method is developed for retrieving upper-level vortex winds from geostationary satellite rapid infrared scans over hurricanes. In this method, new vortex-flow-dependent correlation functions are formulated for the radial and tangential components of the vortex wind. These correlation functions are used to construct the background error covariance matrix and its square root matrix. The resulting square root matrix is then employed to precondition the cost function, constrained by an advection equation formulated for rapidly scanned infrared image movements. This newly formulated and preconditioned cost function is more suitable for deriving upper-level vortex winds from GOES-16 rapid infrared scans over hurricanes than the cost function in the recently adopted optical flow technique. The new method was applied to band-13 (10.3 µm) brightness temperature images scanned every min from GOES-16 over Hurricanes Laura on 27 August 2020 and Hurricanes Ida on 29 August 2021. The retrieved vortex winds were shown to not only be much denser than operationally produced atmospheric motion vectors (AMVs) but also more rotational and better organized around the eyewall than the super-high-resolution AMVs derived from optical-flow technique. By comparing their component velocities (projected along radar beams) with limited radar velocity observations available near the cloud top, the vortex winds retrieved using the new method were also shown to be more accurate than the super-high-resolution AMVs derived from the optical-flow technique. The new method is computationally efficient for real-time applications and potentially useful for hurricane wind nowcasts. Furthermore, the combined use of VF-dependent covariance functions and imagery advection equation is not only novel but was also found to be critically important for the improved performance of the method. This finding implies that similar combined approaches can be developed with improved performance for retrieving vortex flows rapidly scanned using other types of remote sensing on different scales, such as tornadic mesocyclones rapidly scanned by phased-array radars.

Funder

ONR

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3