Effects of Mountains and Ice Sheets on Global Ocean Circulation*

Author:

Schmittner Andreas1,Silva Tiago A. M.1,Fraedrich Klaus2,Kirk Edilbert2,Lunkeit Frank2

Affiliation:

1. Oregon State University, Corvallis, Oregon

2. Universität Hamburg, Hamburg, Germany

Abstract

Abstract The impact of mountains and ice sheets on the large-scale circulation of the world’s oceans is investigated in a series of simulations with a new coupled ocean–atmosphere model [Oregon State University–University of Victoria model (OSUVic)], in which the height of orography is scaled from 1.5 times the actual height (at T42 resolution) to 0 (no mountains). The results suggest that the effects of mountains and ice sheets on the buoyancy and momentum transfer from the atmosphere to the surface ocean determine the present pattern of deep ocean circulation. Higher mountains reduce water vapor transport from the Pacific and Indian Oceans into the Atlantic Ocean and contribute to increased (decreased) salinities and enhanced (reduced) deep-water formation and meridional overturning circulation in the Atlantic (Pacific). Orographic effects also lead to the observed interhemispheric asymmetry of midlatitude zonal wind stress. The presence of the Antarctic ice sheet cools winter air temperatures by more than 20°C directly above the ice sheet and sets up a polar meridional overturning cell in the atmosphere. The resulting increased meridional temperature gradient strengthens midlatitude westerlies by ~25% and shifts them poleward by ~10°. This leads to enhanced and poleward-shifted upwelling of deep waters in the Southern Ocean, a stronger Antarctic Circumpolar Current, increased poleward atmospheric moisture transport, and more advection of high-salinity Indian Ocean water into the South Atlantic. Thus, it is the current configuration of mountains and ice sheets on earth that determines the difference in deep-water formation between the Atlantic and the Pacific.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3