The Importance of Ice Vertical Resolution for Snowball Climate and Deglaciation

Author:

Abbot Dorian S.1,Eisenman Ian2,Pierrehumbert Raymond T.1

Affiliation:

1. Department of Geophysical Sciences, University of Chicago, Chicago, Illinois

2. Division of Geological and Planetary Sciences, California Institute of Technology, and Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Sea ice schemes with a few vertical levels are typically used to simulate the thermodynamic evolution of sea ice in global climate models. Here it is shown that these schemes overestimate the magnitude of the diurnal surface temperature cycle by a factor of 2–3 when they are used to simulate tropical ice in a Snowball earth event. This could strongly influence our understanding of Snowball termination, which occurs in global climate models when the midday surface temperature in the tropics reaches the melting point. A hierarchy of models is used to show that accurate simulation of surface temperature variation on a given time scale requires that a sea ice model resolve the e-folding depth to which a periodic signal on that time scale penetrates. This is used to suggest modifications to the sea ice schemes used in global climate models that would allow more accurate simulation of Snowball deglaciation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3