Affiliation:
1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington
Abstract
Abstract
Sea ice extent and thickness may be affected by cloud changes, and sea ice changes may in turn impart changes to cloud cover. Different types of clouds have different effects on sea ice. Visual cloud reports from land and ocean regions of the Arctic are analyzed here for interannual variations of total cloud cover and nine cloud types, and their relation to sea ice.
Over the high Arctic, cloud cover shows a distinct seasonal cycle dominated by low stratiform clouds, which are much more common in summer than winter. Interannual variations of cloud amounts over the Arctic Ocean show significant correlations with surface air temperature, total sea ice extent, and the Arctic Oscillation. Low ice extent in September is generally preceded by a summer with decreased middle and precipitating clouds. Following a low-ice September there is enhanced low cloud cover in autumn. Total cloud cover appears to be greater throughout the year during low-ice years.
Multidecadal trends from surface observations over the Arctic Ocean show increasing cloud cover, which may promote ice loss by longwave radiative forcing. Trends are positive in all seasons, but are most significant during spring and autumn, when cloud cover is positively correlated with surface air temperature. The coverage of summertime precipitating clouds has been decreasing over the Arctic Ocean, which may promote ice loss.
Publisher
American Meteorological Society
Cited by
140 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献