Affiliation:
1. British Antarctic Survey, Cambridge, United Kingdom
Abstract
Abstract
This study examines the long-range dependency, climate noise characteristics, and nonlinear temperature trends of eight Antarctic stations from the Reference Antarctic Data for Environmental Research (READER) dataset. Evidence is shown that Antarctic temperatures are long-range dependent. To identify possible nonlinear trends, the ensemble empirical mode decomposition (EEMD) method is used, and then the question of whether the observed trends can arise from internal atmospheric fluctuations is examined. To answer this question, surrogate data are generated from two paradigmatic null models: a standard first-order autoregressive process representing a short-range dependent process and a fractional integrated process representing a long-range dependent process. It is found that three of the eight stations show statistically significant trends when tested against the short-range dependent process while only the Faraday–Vernadsky station temperature time series shows a significant trend when tested against the long-range dependent null model. All other considered stations show no trends that are statistically significant against the two null models, and thus they can be explained by internal atmospheric variability. These results imply that more attention should be given to assessing the correlation structure of climate time series.
Publisher
American Meteorological Society
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献