Analyzing trend and periodicity of climatic variables during 1961-2020 over Iran, based on observation data

Author:

Rezaee Ali1,Mosaedi Abolfazl1,Beheshti Aliasghar1,Zarrin Azar1

Affiliation:

1. Ferdowsi University of Mashhad

Abstract

Abstract In recent years, the effects and consequences of climate change have shown themselves by creating irregularities and trends in the essential climatic variables. In most cases, the trend of climatic variables is associated with periodicity. In this study, the trends and periodicity of these data (precipitation, temperature, evapotranspiration, and net available water (NWA) have been investigated in a period of 60 years in Iran. The Mann-Kendall trend test and Sen’s slope estimator are applied for analyzing the trend and its magnitude. Wavelet transform is used to detect the periodicity of time series and to determine the correlation between NWA and temperature, precipitation, and evapotranspiration in common periodicity. The results show that the stations located in eastern and western Iran have more significant increasing/decreasing trends. Evapotranspiration shows the highest increasing trend in most stations, followed by temperature, while NWA and precipitation have trends at lower significance levels and decreasing direction. The examination of periodicity in time series showed that, among all the studied stations, evapotranspiration has the most extended periodicity with an average length of 8.3 years, followed by NWA, temperature, and precipitation with 7.3 years, 5.8 years, and 5.5 years. The results of the correlations investigation showed that in about 80% of the stations, there is a high correlation between precipitation and NWA in the short-term periodicity and at the end of the studied period. The evapotranspiration variable in most stations has a high correlation in different periodicities with the amount of NWA.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3