Size and Structure of Dry and Moist Reversible Tropical Cyclones

Author:

Wang Danyang1,Lin Yanluan1

Affiliation:

1. Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China

Abstract

Abstract The size and structure of tropical cyclones (TCs) are investigated using idealized numerical simulations. Three simulations are conducted: a pure dry TC (DRY), a moist reversible TC (REV) with fallout of hydrometeors in the atmosphere disallowed, and a typical TC (CTL). It was found that the width of the eyewall ascent region and the radius of maximum wind rm are much larger in DRY and REV than those in CTL. This is closely related to the deep inflow layer (~4 km) in DRY and REV associated with a different entropy restoration mechanism under the subsidence region. With the wide ascents, the close link between rm and the outer radius in DRY and REV can be well predicted by the Emanuel and Rotunno (ER11) model. The magnitude of subsidence, mainly controlled by the vertical gradient of entropy in the mid- and upper troposphere, is nearly one order greater in DRY and REV than that in CTL. This study demonstrates that the falling nature of hydrometeors poses a strong constraint on the size and structure of real world TCs via the entropy distribution in the subsidence region. The wide ascent, self-stratification in the outflow, and decently reproduced wind profile in DRY and REV suggest that DRY and REV behave like a prototype of the ER11 model with CTL being an extreme type.

Funder

National Natural Science Foundation of China

National Key Research Project of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference36 articles.

1. Dissipative heating and hurricane intensity;Bister;Meteor. Atmos. Phys.,1998

2. Saturated-adiabatic ascent of air through dry-adiabatically descending environment;Bjerknes;Quart. J. Roy. Meteor. Soc.,1938

3. The computation of equivalent potential temperature;Bolton;Mon. Wea. Rev.,1980

4. A benchmark simulation for moist nonhydrostatic numerical model;Bryan;Mon. Wea. Rev.,2002

5. Evaluation of an analytical model for the maximum intensity of tropical cyclones;Bryan;J. Atmos. Sci.,2009

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3