Response of the Atmosphere to Orographic Forcings: Insight from Idealised Simulations

Author:

Tewari Kamal1,Mishra Saroj K.2,Dewan Anupam1,Anand Abhishek2,Kang In-Sik3

Affiliation:

1. 1 Department of Applied Mechanics, IIT Delhi, New Delhi, INDIA

2. 2 Centre for Atmospheric Sciences, IIT Delhi, New Delhi, INDIA

3. 3 Indian Ocean Center, SOED, Second Institute of Oceanography, Ministry of Natural Resources, China/School of Oceanography, Shanghai Jiaotong University, Shanghai, China

Abstract

AbstractEarth’s orography profoundly influences its climate and is a major reason behind the zonally asymmetric features observed in the atmospheric circulation. The response of the atmosphere to orographic forcing, when idealized aqua mountains are placed individually and in pairs (180° apart) at different latitudes, is investigated in the present study using a simplified general circulation model. The investigation reveals that the atmospheric response to orography is dependent on its latitudinal position: orographically triggered stationary waves in the mid-latitudes are most energetic compared to the waves generated due to anomalous divergence in the tropics. The impact on precipitation is confined to the latitude of the orography when it is placed near the tropics, but when it is situated at higher latitudes, it also has a significant remote impact on the tropics. In general, the tropical mountains block the easterly flow, resulting in a weakening of the Hadley cells and a local reduction in the total poleward flux transport by the stationary eddies. On the other hand, the mid-latitudinal orography triggers planetary-scale Rossby waves and enhances the poleward flux transport by stationary eddies. The twin mountains experiments, which are performed by placing orography in pairs at different latitudes, show that the energy fluxes, stationary wave, and precipitation pattern are not merely the linear additive sum of individual orographic responses at these latitudes. The non-linearity in a diagnostic sense is a product interaction of flow between the two mountains, which depends on the background flow, the separation distance between mountains, and wind shear worldwide.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3