Climatological Features of the Weakly and Very Stably Stratified Nocturnal Boundary Layers. Part II: Regime Occupation and Transition Statistics and the Influence of External Drivers

Author:

Abraham Carsten1ORCID,Monahan Adam H.1

Affiliation:

1. School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Abstract

Abstract In a companion paper hidden Markov model (HMM) analyses have been conducted to classify the nocturnal stably stratified boundary layer (SBL) into weakly stable (wSBL) and very stable (vSBL) conditions at different tower sites on the basis of long-term Reynolds-averaged mean data. The resulting HMM regime sequences allow analysis of long-term (climatological) SBL regime statistics. In particular, statistical features of very persistent wSBL and vSBL nights, in which a single regime lasts for the entire night, are contrasted with those of nights with SBL regime transitions. The occurrence of very persistent nights is seasonally dependent and more likely in homogeneous surroundings than in regions with complex terrain. When transitions occur, their timing is not seasonally dependent, but transitions are enhanced close to sunset (for land-based sites). The regime event durations depict remarkably similar distributions across all stations with peaks in transition likelihood approximately 1–2 h after a preceding transition. At Cabauw in the Netherlands, very persistent wSBL and vSBL nights are usually accompanied by overcast conditions with strong geostrophic winds Ugeo or clear-sky conditions with weak Ugeo, respectively. In contrast, SBL regime transitions can neither be linked to magnitudes in Ugeo and cloud coverage nor to specific tendencies in Ugeo. However, regime transitions can be initiated by changes in low-level cloud cover.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3